Density Practice: Worksheet #1

Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm^3 . The chart on the right lists the densities of some common materials.

 $D = \underline{m}{V}$

pressed in	Gold	19.3
nsities of	Mercury	13.5
	Lead	11.4
	Iron	7.87
	Aluminum	3.7
	Bone	1.7-2.0
7	Gasoline	0.66-0.69
	Air (dry)	0.00119

Substance

Density

 (g/cm^3)

Equation:	Density	= <u>mass</u>	or	
		Volume		

Problem Statement	Formula	Define Variables	Substitution	Answer
Sample: What is the density of a	D = <u>m</u>	M = 250 g	D = 250 g	2.5 g/cm^{3}
billiard ball that has a volume of	V	$V = 100 \text{ cm}^3$	$100 \mathrm{cm}^3$	
100 cm^3 and a mass of 250 g?				
1. A loaf of bread has a volume				
of $2270 \mathrm{cm}^3$ and a mass of 454 g.				
What is the density of the bread?				
2. A block of wood has a density				
of 0.6 g/cm ³ and a volume of				
1.2 cm^3 . What is the mass of the				
block of wood?				
3. A 800g boulder has a density				
of 8 g/cm ³ . What is the volume				
of the boulder?				
4. What is the mass of the block				
of iron illustrated below?				
2 cm				
10 cm				
			1	

Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

Mass (g)	Volume	D = m/v Variable Substitutions	Density	Substance
4725	350	$D = \frac{4725}{350}$	D = 13.5	Mercury
171	15			
148	40			
475	250			
680	1000			